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The problem

• We are interested in making decisions/inferences about the real world


• We have some numerical solution of mathematical model (simulator) of 
how the real world works


• And some observations of the real world


• We want to use the observations to improve the simulator to help us make 
our decisions/inferences



• Denote reality by 


• Measurements of 





• Simulator





 

R

R

d = R + ϵdata

y = f(θ)

y = R + ϵdiscrepancy



Model discrepancy 
Statisticians (engineers/scientists) are like artists they have an unfortunate tendency to fall in love with their models - George Box

• Input Values


• We do not know the ‘best’ value of the inputs 


• Discretisation


• The numerical simulator is an approximation to the actual equations


• The Equations


• The equations are inevitably only an approximation


• These last two I will call ‘structural error’

θ*



The Importance of Structural Error

• There is no reason to believe that the structural error averages out in any 
sense.


• We cannot write


• 


• Even at the ‘best’ value of our inputs our model is not correct


• ‘All models are wrong…’

R = f(θ*)



Slow Models

• The simulators we use are computationally expensive. (Hours to months)


• We can only do a limited number of runs of the simulator


• Build a surrogate model (emulator) and use that for inference



The Emulator

• An emulator is a surrogate model that includes a measure of its own 
uncertainty.


• We use Gaussian process emulators



Gaussian processes

• Gaussian processes are infinite dimensional stochastic processes all of 
whose marginal, conditional and joint distributions are Normal


• They are an analog of the Normal distribution for functions


• Defined by a mean function  and a covariance function 


• Infinitely wide single layer neural net


• Deep Gaussian processes are available

μ(x) C(x1, x2)



• Consider one input and one output 

• Emulator estimate interpolates data 

• Emulator uncertainty grows between data points

2 code runs



• Adding another point changes estimate and reduces 
uncertainty

3 code runs



• And so on

5 code runs



Fitting the Gaussian Process Emulator

• Set up priors for the mean function and the parameters of the GP


• Run the simulator in a carefully designed experiment


• Find the posteriors for the GP parameters


• Validate the emulator (Leave one out, Bastos and O’Hagan, 2009, 
Technometrics)



● ●

●

● ●

0 1 2 3 4 5

0
1

2
3

4
5

6

B = 1

X

Y

● design
true function
prior
mean
± 2 s.d.

● ●

●

● ●

0 1 2 3 4 5

0
1

2
3

4
5

6

B = 10

X
Y

● design
true function
prior
mean
± 2 s.d.

● ●

●

● ●

0 1 2 3 4 5

0
1

2
3

4
5

6

B = 100

X

Y

● design
true function
prior
mean
± 2 s.d.



Using the GP Emulator

• Prediction


• Sensitivity Analysis


• Uncertainty Analysis


• Inverse Modelling (calibration, tuning)



Inverse Modelling

• Have some observations of the real world


• And a numerical simulator


• Use the observations to make inferences about the simulator, in particular 
about its inputs



The Classical Methods

• Minimise a loss function (usually the squared difference) to get point 
estimates


• Use Bayesian Calibration to get posteriors on the inputs


• BUT because of the structural error term neither of these is appropriate


• Serious risk of over-fitting



Kennedy and O’Hagan

• Kennedy and O’Hagan (2001, JRSSB) simultaneously fit Gaussian process 
emulators to both the simulator and the discrepancy term.


• Works well for prediction but there are identifiability problems.


• Strong priors can get around these Brynjarsdottir and O’Hagan (2014 
Inverse Problems)


• Or we could limit the form of the discrepancy term



History Matching

• An alternative is known as history matching


• Instead of trying to find the ‘best’ set of simulator inputs ( ) find all those 
sets of inputs that give implausible model outputs.


• Remove these and what is left must contain the best set


• Optimisation is hard

θ*



Implausibility
• The idea of history matching is based on the idea of implausibility





Expanding


Imp(θ) =
E[y − f(θ)]2

V(y − f(θ))

Imp(θ) =
(yobs − E[ f̃(θ)])2

σ2
emul(θ) + σ2

obs + σ2
discrep



History Matching in practice
1. Run our simulator in a designed experiment


2. Build and validate a GP emulator


3. Calculate the implausibility


4. All points with implausibility > 3 are ruled implausible (Pukelsheim (1994))


5. What remains is termed Not Ruled Out Yet  (NROY) space


• Repeat steps 1-5 in waves until we reach a stopping rule
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Stopping Rules

• NROY shrinks to some prespecified value and we do a K&OH calibration 
in this reduced space 


• NROY becomes so small we can effectively use it as a point estimate


• NROY disappears completely. The simulator and the data are not 
compatible



NROY Disappearing
• If the simulator and the data are incompatible NROY will go to zero (all points 

are implausible)


• If you do classical calibration this will not be apparent. You will get the set of 
inputs closest to the data (even if they are a long way away) and this estimator 
will appear to get less and less uncertain even though the simulator and data 
are incompatible


• The discrepancy between the simulator and the reality, , is too small. By 
increasing this term we can make NROY finite again.


• This gives us a ‘tolerance to error’ to discuss with the modeller/decision maker.

σ2
discrep



A  Non-Trivial Example



Diastolic Heart Disease
• Diastolic heart failure is an untreatable cardiac condition.


• Affects about 450,000 people in the UK


• The heart becomes stiff and cannot behave normally.


• 9 unsuccessful drug trials.


• Could be more than one condition


• Can a numerical cardiac model help with diagnosis?


• As a case study we compared a single healthy patient with a single 
unhealthy one.



NROY for patient A

Wave 1

Wave 2



NROY for patients 
 with condition

NROY for patients 
without condition

…



A Cardiac Model

Thanks to Steve Neiderer, KCL/St Thomas



Preprocessing the data
• We treat all the simulator output (in space and time) as a single vector.


• We reduce the dimensionality by using a modified version of PCA 

Salter et al (2019)Uncertainty Quantification for Computer Models With Spatial Output Using Calibration-Optimal Bases. JASA. http://doi.org/10.1080/01621459.2018.1514306

• The results are shown for the first principal component; the second is similar


• Initial analysis - elicited no discrepancy. NROY goes to zero. 


• Elicit more reasonable discrepancy term


• Compare to an MRI scan for a healthy patient

http://doi.org/10.1080/01621459.2018.1514306


Wave 1: 25% of the parameter space 
remains



Wave 2: 6% of the parameter space 
remains



Wave 3: 5% of the parameter space 
remains



Results

• History matching for the unhealthy patient reduces to a few percent


• The final NROYs do not overlap


• Need more patients, more MRI scans



Advantages and Disadvantages 
of History Matching

• Gives a range not a point value or posterior


• Not probabilistic - geometric


• NROY can become empty


• Bayesian calibration finds the closest point to the data



Issues
• Design


• Multiple metrics


• Perfect models 


• Relationship to ABC


• Discrepancy


• Physical and biological systems



Design

• Design for Wave 1 is standard


• For later waves there are issues


• Put all new points in NROY?


• Optimal Design (Volodina Thesis)



Green dots are good points found by evaluating the true model Depth plot of NROY space at wave 4

After 1 wave, just looking at the 2 most active parameters 
(blue +s true good points, black dots wave 1 design, 

green = NROY, orange/red = not NROY)

James Salter, Tim Dodwell



Multiple Metrics
• Combining metrics 

• Max(Imp) (Vernon et al 2010) 

• Second, third largest 

• Multivariate methods 

Imp(θ)2 = (y − E( f(θ)))TVar(y − E( f(θ)))−1(y − E( f(θ)))



‘Perfect’ models
• In a ‘perfect’ model Vdisc = 0 

• Add ‘perfect’ data -> Vy=0 

• Both of these go to zero as we increase the number of 
model runs (under our assumptions) 

• But which goes fastest?

Imp =
(y � E(f(x))2

Vemul



Physical vs Biological 
Systems

• One of the components of the implausibility measure is 


• For physical systems it is reasonable to think of this as a 
number


• The data error is the ‘measurement error’


• All jet engines are the same; all rabbits are different


• Variation between and within populations

σ2
data



Relationship to ABC

• Approximate Bayesian Computation (ABC) rejects models 
that are far from the data


• It is similar to history matching (Wilkinson et al)


• The calculations are the same but the motivation is 
different



Discrepancy
• Hard to specify


• ‘Unknown unknowns’


• Unmodelled processes


• Assumptions in the model


• Discretisations


• How could the model be improved?



Physical vs Biological 
Systems

• One of the components of the implausibility measure is 


• For physical systems it is reasonable to think of this as a 
number


• The data error is the ‘measurement error’


• All jet engines are the same; all rabbits are different


• Variation between and within populations

σ2
data



Uncertainty in Biological 
Systems

• Calibrating the model on the population (large variance) is 
not very precise


• Sub-populations have less variability - more precise 
calibration (need a better model)


• Need to decide why you need a calibrated model and for 
what purpose


• Personalised medicine?



Conclusions

• History matching is an alternative solution to inverse 
models


• Related to ABC


• No optimisation required
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