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The problem

We are interested in making decisions/inferences about the real world

We have some numerical solution of mathematical model (simulator) of
how the real world works

And some observations of the real world

We want to use the observations to improve the simulator to help us make
our decisions/inferences



* Denote reality by R

e Measurements of R

d=R + €data
« Simulator
y = f(0)



Model discrepancy

Statisticians (engineers/scientists) are like artists they have an unfortunate tendency to fall in love with their models - George Box

Input Values

» We do not know the ‘best’ value of the inputs 6*

Discretisation

 [he numerical simulator is an approximation to the actual equations
The Equations

* The equations are inevitably only an approximation

These last two | will call ‘structural error’



The Importance of Structural Error

* There is no reason to believe that the structural error averages out in any
sense.

 We cannot write
© R = f(6%)
 Even at the ‘best’ value of our inputs our model is not correct

 ‘All models are wrong...’



Slow Models

 The simulators we use are computationally expensive. (Hours to months)
 \We can only do a limited number of runs of the simulator

* Build a surrogate model (emulator) and use that for inference



The Emulator

 An emulator is a surrogate model that includes a measure of its own
uncertainty.

 \We use Gaussian process emulators



Gaussian processes

Gaussian processes are infinite dimensional stochastic processes all of
whose marginal, conditional and joint distributions are Normal

They are an analog of the Normal distribution for functions
Defined by a mean function ¢(x) and a covariance function C(x;, x,)

Infinitely wide single layer neural net

Deep Gaussian processes are available



2 code runs

 Consider one input and one output
 Emulator estimate interpolates data

 Emulator uncertainty grows between data points
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3 code runs

 Adding another point changes estimate and reduces
uncertainty
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5 code runs

® And so on
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Fitting the Gaussian Process Emulator

e Set up priors for the mean function and the parameters of the GP
 Run the simulator in a carefully designed experiment
 Find the posteriors for the GP parameters

e \alidate the emulator (Leave one out, Bastos and O’Hagan, 2009,
Technometrics)
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Using the GP Emulator

Prediction
Sensitivity Analysis
Uncertainty Analysis

Inverse Modelling (calibration, tuning)



Inverse Modelling

e Have some observations of the real world
e And a numerical simulator

 Use the observations to make inferences about the simulator, in particular
about its inputs



The Classical Methods

Minimise a loss function (usually the squared difference) to get point
estimates

Use Bayesian Calibration to get posteriors on the inputs
BUT because of the structural error term neither of these is appropriate

Serious risk of over-fitting



Kennedy and O’Hagan

Kennedy and O’Hagan (2001, JRSSB) simultaneously fit Gaussian process
emulators to both the simulator and the discrepancy term.

Works well for prediction but there are identifiability problems.

Strong priors can get around these Brynjarsdottir and O’Hagan (2014
Inverse Problems)

Or we could limit the form of the discrepancy term



History Matching

An alternative is known as history matching

Instead of trying to find the ‘best’ set of simulator inputs (6*) find all those
sets of inputs that give implausible model outputs.

Remove these and what is left must contain the best set

Optimisation is hard



Implausibility

* The idea of history matching is based on the idea of implausibility

—

Ely — f(O)]°
V(y — f(0))

L,,,(0) = \

Expanding

(yabs o E[f(e)])2

(6,) T Gozbs T Gc%iscrep



History Matching In practice

1. Run our simulator in a designed experiment

2. Build and validate a GP emulator

3. Calculate the implausibility

4. All points with implausibility > 3 are ruled implausible (Pukelsheim (1994))
5. What remains is termed Not Ruled Out Yet (NROY) space

 Repeat steps 1-5 in waves until we reach a stopping rule
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Stopping Rules

NROY shrinks to some prespecified value and we do a K&OH calibration
IN this reduced space

NROY becomes so small we can effectively use it as a point estimate

NROY disappears completely. The simulator and the data are not
compatible



NROY Disappearing

If the simulator and the data are incompatible NROY will go to zero (all points
are implausible)

If you do classical calibration this will not be apparent. You will get the set of
inputs closest to the data (even if they are a long way away) and this estimator
will appear to get less and less uncertain even though the simulator and data
are incompatible

2

Oiscrep’ 1S too small. By

The discrepancy between the simulator and the reality,
increasing this term we can make NROY finite again.

This gives us a ‘tolerance to error’ to discuss with the modeller/decision maker.



A Non-Trivial Example



Diastolic Heart Disease

e Diastolic heart failure is an untreatable cardiac condition.
e Affects about 450,000 people in the UK

e The heart becomes stiff and cannot behave normally.

e 9 unsuccessful drug trials.

Could be more than one condition

Can a numerical cardiac model help with diagnosis?

As a case study we compared a single healthy patient with a single
unhealthy one.



NROY for patient A




NROY ftor patients
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A Cardiac Model

Thanks to Steve Neiderer, KCL/St Thomas



Preprocessing the data

* We treat all the simulator output (in space and time) as a single vector.

* \We reduce the dimensionality by using a modified version of PCA

Salter et al (2019)Uncertainty Quantification for Computer Models With Spatial Output Using Calibration-Optimal Bases. JASA. http://doi.org/10.1080/01621459.2018.1514306

* The results are shown for the first principal component; the second is similar
 |nitial analysis - elicited no discrepancy. NROY goes to zero.
* Elicit more reasonable discrepancy term

 Compare to an MRI scan for a healthy patient


http://doi.org/10.1080/01621459.2018.1514306

25% of the parameter space

Wave 1

remalns

OO
Ny vO

cCooo .

o
: ol
o

1ax_tain_ s casl kxbx A er e er Tref phi mma ammr perr jetal etal ap ¢1 :moc :moc ‘moc p

S LLLLELARLLLLLLALLLE

MERAARRRRRINNcE
LEAR I AARARRER N A
LLELREEELLTII )]
4 Y ' | _ AW r.‘
ANRMNANAARRNRRE R
TR ]
ALLLROERLLLIRI R )]
AIRARIEANRARRRINRRE
Ll _
ANANAIEAARA HRR MRS
AARARIRANR RNRE1ARAR
RRRRRIRRNCHMRRR144AR
AURNRRA RUNNRR AAN
ANRNNIR NRMRRRRdNE
B
PAORANQRERANER IHHRE

‘- 1‘ ¥ -_‘. - - J. ﬂ.-c_ l...‘. —.‘ i ‘.3 4

T TR T T I T T T

. .
LLLRBE LU RLELL
) )
| V
AAROH (NRNNNNERN RER)
_ |
LM LR ,
HoBEN (NUNNAAREN RAAI
m_ - _
| |
HNAN (00 |

95

0

0.90
0.85
0.75

Probability
of Remaining
Implausibility

Minimum

rmod

cmod

fiber_endo Tref h gamma_w gamma nperm betal betala

r_epi

fi

kx

cas0



6% of the parameter space
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Results

* History matching for the unhealthy patient reduces to a few percent
 The final NROYs do not overlap

 Need more patients, more MRI scans



Advantages and Disadvantages
of History Matching

e (ives a range not a point value or posterior
e Not probabillistic - geometric
e NROY can become empty

e Bayesian calibration finds the closest point to the data



Design

Multiple metrics
Perfect models
Relationship to ABC
Discrepancy

Physical and biological systems



Design

* Design for Wave 1 is standard
* For later waves there are issues
e Put all new points in NROY?

* Optimal Design (Volodina Thesis)
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After 1 wave, just looking at the 2 most active parameters
(blue +s true good points, black dots wave 1 design,
Green dots are good points found by evaluating the true model Depth plot of NROY space at wave 4 green = NROY, orange/red = not NROY)

James Salter, Tim Dodwell



Multiple Metrics

o Combining metrics
e Maz (Imp) (Vernon et al 2010)

* Second, third largest

e Multivariate methods

L,,(0)* = (y — E(f(0)))" Var(y — E(f(0))) (v — E(f(6)))



Pertect’ models

In a ‘pertect’ model Viise = 0

Add ‘perfect’ data -> ,=0

(y — E(f(z))°
Vemul

Imp =

Both of these go to zero as we increase the number of
model runs (under our assumptions)

But which goes fastest?



Physical vs Biological
Systems

One of the components of the implausibility measure is 67

For physical systems it is reasonable to think of this as a
number

The data error is the ‘measurement error’
All jet engines are the same; all rabbits are different

Variation between and within populations



Relationship to ABC

e Approximate Bayesian Computation (ABC) rejects models
that are far from the data

e |t is similar to history matching (Wilkinson et al)

e The calculations are the same but the motivation is
different



Discrepancy

Hard to specify

‘Unknown unknowns’
Unmodelled processes
Assumptions in the model
Discretisations

How could the model be improved?



Physical vs Biological
Systems

One of the components of the implausibility measure is 67

For physical systems it is reasonable to think of this as a
number

The data error is the ‘measurement error’
All jet engines are the same; all rabbits are different

Variation between and within populations



Uncertainty in Biological
Systems

Calibrating the model on the population (large variance) is
not very precise

Sub-populations have less variability - more precise
calibration (need a better model)

Need to decide why you need a calibrated model and for
what purpose

Personalised medicine?



Conclusions

e History matching is an alternative solution to inverse
models

e Related to ABC

e No optimisation required
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James Salter, Hossein Mohammedi, Danny Williamson, Victoria Volodina,
Tim Dodwell at Exeter

Michael Goldstein, lan Vernon at Durham, Richard Wilkinson at Sheffield,
Steve Neiderer at KCL



